Pre-loader

/ K2 Cloud ERP for Python / Програмістам / Різні задачі Python-програмістів / Розпізнавання / Формування питань за допомогою AI на основі переданих даних

Формування питань за допомогою AI на основі переданих даних

To generate test questions from a set of standard texts using Python and AI, you can use the following approach:

  1. Preprocess and clean the input text.
  2. Extract key concepts and entities from the text.
  3. Use an AI language model like GPT to generate questions based on the extracted concepts and entities.

For this example, we'll use the Hugging Face's Transformers library with the OpenAI's GPT model.

First, install the necessary libraries:

pip install transformers spacy

Next, create a Python script with the following code:

import spacy
from transformers import pipeline

def preprocess_text(text):
    # Load the Spacy English model
    nlp = spacy.load("en_core_web_sm")

    # Tokenize and parse the input text
    doc = nlp(text)

    # Extract key concepts and entities
    concepts = [chunk.text for chunk in doc.noun_chunks]

    return concepts

def generate_questions(concepts):
    # Create a question generation pipeline using GPT
    question_generator = pipeline("text2text-generation", model="text2text/question-generation")

    # Generate questions based on the concepts
    questions = question_generator(concepts)

    return [question["generated_text"] for question in questions]

# Replace this with your input text containing the standards
input_text = """
Your input text containing the standards.
"""

concepts = preprocess_text(input_text)
questions = generate_questions(concepts)

# Print the generated questions
for i, question in enumerate(questions, 1):
    print(f"Question {i}: {question}")

This script preprocesses the input text, extracts key concepts using Spacy, and generates questions using the GPT model from the Transformers library.

Please note that this is a basic example, and the quality of the generated questions might not be perfect. You may need to fine-tune the GPT model with domain-specific data, adjust the preprocessing steps, or modify the question generation process to achieve better results.

Для української та російської мови

To generate test questions from a set of standard texts in Ukrainian or Russian using Python and AI, you can follow a similar approach as before, but with modifications for the specific languages.

First, install the necessary libraries:

pip install transformers spacy
python -m spacy download uk_core_news_sm  # For Ukrainian
python -m spacy download ru_core_news_sm  # For Russian

Next, create a Python script with the following code:

import spacy
from transformers import pipeline

def preprocess_text(text, language):
    # Load the Spacy model for the specified language
    if language == `uk`:
        nlp = spacy.load("uk_core_news_sm")
    elif language == `ru`:
        nlp = spacy.load("ru_core_news_sm")
    else:
        raise ValueError("Unsupported language")

    # Tokenize and parse the input text
    doc = nlp(text)

    # Extract key concepts and entities
    concepts = [chunk.text for chunk in doc.noun_chunks]

    return concepts

def generate_questions(concepts, language):
    # Create a question generation pipeline using GPT
    # Note: You need to use a GPT model that supports Ukrainian or Russian
    model_name = "text2text/question-generation"  # Replace with a suitable model
    question_generator = pipeline("text2text-generation", model=model_name)

    # Generate questions based on the concepts
    questions = question_generator(concepts)

    return [question["generated_text"] for question in questions]

# Replace this with your input text containing the standards
input_text = """
Ваш вхідний текст із стандартами.
"""

language = "uk"  # Set to `uk` for Ukrainian or `ru` for Russian
concepts = preprocess_text(input_text, language)
questions = generate_questions(concepts, language)

# Print the generated questions
for i, question in enumerate(questions, 1):
    print(f"Питання {i}: {question}")

This script preprocesses the input text, extracts key concepts using Spacy, and generates questions using the GPT model from the Transformers library. To switch between Ukrainian and Russian languages, change the language variable to 'uk' or 'ru', respectively.

Please note that the quality of the generated questions might not be perfect. You may need to fine-tune the GPT model with domain-specific data, adjust the preprocessing steps, or modify the question generation process to achieve better results. Also, you need to replace the model_name variable with a suitable GPT model that supports Ukrainian or Russian languages.


    Runtime Site: 5.146789 s.